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Microcantilever beams are versatile force sensors used for, among others, microaccelerometry, microelec-
tromechanical systems, and surface force measurements, the most prominent application being atomic force
microscopic imaging and force spectroscopy. Bending of the cantilever is used for simple force measurements,
while changes in the amplitude or frequency of the fundamental resonance are used to detect small interaction
forces or brief perturbations. Spring constants needed for quantitative measurements are determined by “re-
versing” the force measurements, using either Hooke’s law or the oscillation of the beam. The equality of the
Hookian and the oscillating spring constant is generally assumed; however, consistent differences in experi-
mental results suggest otherwise. In this work, we introduce a theoretical formula to describe the relationship
between these two spring constants for an Euler-Bernoulli beam. We show that the two spring constants are not
equal, although the percentage difference stays in the range of a single digit. We derive a general formula for
the determination of effective spring constants of arbitrary eigenmodes of the cantilever beam. We demonstrate
that all overtones can be treated with a linear spring - effective mass approach, where the mass remains the
same for higher eigenmodes.
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I. INTRODUCTION

Accurate measurement of small forces plays a determin-
ing role in a wide range of applications from integrated mi-
croelectromechanical systems1 through microaccelerometers
�used in, e.g., artificial limbs�2,3 to force microscopes.4 The
required detection limit is shrinking with the size of devices,
reaching the range of second-order molecular interactions in-
volved in surface adhesion, conformation changes, antibody-
antigen interactions, and protein folding. Characterizing such
interactions, in turn, brings into reach the understanding of
the rules that govern the molecular world.

The simplest microscopic force sensor is a microcantile-
ver, such as the probe of an atomic force microscope
�AFM�.4 AFM uses a microcantilever equipped with a sharp
tip to perform precise measurements of probe-surface inter-
action force to record an envelope of constant force as the
surface morphology. During this process, forces in the order
of pN are detected; the AFM is thus an ideal model of mi-
crocantilever force sensors. Hence, we approach the problem
from the direction of AFM force measurements.

Microcantilevers are frequently described as linear
springs. Thus, the linear relationship between the measured
�exerted� force and the deflection d of the microcantilever
probe can be described by Hooke’s law: F=kst�d provided
that the deflection remains small. The static �Hookian� spring
constant �kst� is used for quantitative force-distance
measurements5 performed through different AFM working
modes such as point force spectroscopy, force volume
imaging,6 pulsed force mode,7 and jumping mode.8 Another
less direct way to determine forces with a microcantilever is
by measuring changes in the amplitude or frequency of an
oscillating eigenmode,9,10 both being influenced by external
force fields, arising from, e.g., electric charges, surface en-
ergy, or elasticity.11–18 To calculate forces or the surface
properties that these forces represent, first the spring constant
of the cantilever has to be determined.

The importance of the spring constant, however, is not
limited to force measurements. The average tip-sample

power dissipation ��Pts�� during imaging with the oscillating
probe, to the first approach, is a linear function of the canti-
lever spring constant,

�Pts� =
kA2�0

2

2Q
� A0

Asp
sin � − 1� , �1�

where A0 and Asp are the amplitudes of the probe far from
and in intermittent contact with the surface, respectively; Q
is the quality factor of the cantilever; � is the phase differ-
ence between the drive and probe oscillation; and �0 is the
angular resonance frequency of the cantilever.19,20 The inclu-
sion of nonlinear surface interactions might alter this simple
relationship for small oscillating amplitudes, as it was shown
in a number of model simulation works;12,14,21–24 neverthe-
less, nondestructive imaging of delicate samples depends on
the spring constant. For routine operation, selection of proper
probe spring constant and measurement thereof is part of the
working protocols. However, when using higher eigenmodes
of the cantilever beam, as suggested recently due to presum-
ably higher force sensitivity,19,25–29 there is no simple proto-
col to choose; neither a simple method to measure the effec-
tive spring constant of the probe.

To the first approach, from the dimensions and elastic
properties of the cantilever beam the Hookian spring con-
stant kst can be calculated. For a rectangular beam, the ratio
of the static load and end-point deflection is described by a
simple formula,30

kst =
a3bE

4L3 . �2�

Here, E is the Young modulus, the length of the cantilever
is L, while a and b are the cantilever thickness and width,
respectively. It was noticed, however, that the effective
spring constant often differs from this theoretical one; thus,
dynamic measurements are also frequently used for calibra-
tion.
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Measurement of effective spring constant is frequently
done by the addedd mass, thermal noise, and Sader
methods.30–33 Of these, the added mass method offers a way
to develop a theoretical formula to relate the spring constant
measured this way to the Hookian spring constant of the
beam. In this method, small masses are attached to the can-
tilever and the shift of the resonance frequency is measured.
The resonance frequency and the added mass are related as

�0 =� kdy

meff + mad
�3�

Here, �0, kdy, meff, and mad stand for the angular resonance
frequency, dynamic spring constant, effective mass of the
cantilever, and the added mass, respectively. The dynamic
spring constant can be expressed as a function of the

��0

�mad

derivative using Eq. �3� as follows:

kdy = −
�0

3

2

1
��0

�mad

. �4�

In practice, kdy and kst are not distinguished and they are
approximated to be equal. However, an article by Sidles et
al.34 suggests without disclosing the details that values of kdy
and kst exhibit a 3% difference. In this Brief Report we in-
vestigate whether this difference exists. We treat the cantile-
ver as an Euler-Bernoulli beam which was shown to be a
good model for small displacements.35 In the second part of
this Brief Report, we derive a simple equation which ex-
presses the dynamic spring constant in higher eigenmodes
based on the definition given by Eq. �4�.

II. MODEL

Euler-Bernoulli beam equation �Eq. �5�	 governs the free
transverse vibrations u�x , t� of a uniform beam of elastic
modulus E, mass density �, cross-sectional inertia I, and
cross-sectional area A,

EI
�4u�x,t�

�x4 + �A
�2u�x,t�

t2 = 0. �5�

For rectangular beam of width b and height a, the cross-
sectional inertia takes a simple form,

I =
a3b

12
�6�

The general solution of Eq. �5� can be found in many
textbooks,36,37

u�x,t� = �C1 sin��x� + C2 cos��x� + C3 sinh��x�

+ C4 cosh��x�	exp��t� . �7�

Substituting Eq. �7� into Eq. �5�, one can easily derive the
dispersion equation that describes the wave number � as a
function of the angular frequency �,

� =�4 �A

EI
�2. �8�

To apply this formula to the added mass method, the
boundary conditions are set in the geometry of the experi-

mental setup. Clamped end is the one fixed to the Z piezo;
the added mass is attached to the other end �Fig. 1�. Hence,
the following boundary conditions apply:

Clamped end �x=0�,
u�0,t� = 0, �9�
�u�0,t�

�x
= 0. �10�

Free end �x=L�,

�2u�L,t�
�x2 = 0, �11�

EI
�3u�L,t�

�x3 = − mad
�2u�L,t�

�t2 . �12�

Inserting the general solution into the boundary conditions,
we get four equations which are linear in terms of Ci. Con-
sequently, there exist nontrivial solutions for Ci only if the
determinant of the coefficient matrix is zero,

C2 + C4 = 0,

�C1 + �C3 = 0

− �2 sin��L�C1 + �− �2�cos��L�C2 + �2 sinh��L�C3

+ �2 cosh��L�C4 = 0,


−
�A

mad
cos��L� + � sin��L��C1 + 
 �A

mad
sin��L�

+ � cos��L��C2 + 
 �A

mad
cosh��L� + � sinh��L��

C3 + 
 �A

mad
sinh��L� + � cosh��L��C4 = 0. �13�

By introducing a new variable �=�L, the determinant can be
written as follows:

�1 + cos���cosh���	 +
�mad

�AL
�cos���sinh��� − sin���cosh���	

= 0. �14�

For any given mad Eq. �14� can be satisfied by an infinite

FIG. 1. Model of the microcantilever with added mass. The
length of the rectangular microcantilever is L while a and b denote
the microcantilever thickness and width.
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number of �i�mad� where �i�mad� corresponds to the ith over-
tone of the cantilever. The fundamental mode is denoted by
i=0. The eigenfrequency of the ith overtone while its end is
loaded with a mass �mad� can be expressed as follows:

�i�mad� = �i
2�mad�� EI

�AL4 . �15�

To calculate the dynamic spring constant using Eq. �4�, we
have to calculate the derivatives

��i

�mad
and

��i

�mad
. This derivative

in general depends on mad. However, if we assume that the
added mass is very small, more precisely mad→0, then we
get a simple form for

��i

�mad
,

� ��i

�mad
�

mad=0
= −

�i�0�
�AL

. �16�

By substituting Eq. �16� into Eq. �15�, we get the form of
��i

�mad

as follows:

� ��i

�mad
�

mad=0
=

− 2�i
2�0�

L3 � EI

�3A3 . �17�

To calculate the dynamic spring constant for the fundamental
mode �kdy�, we substitute the expression of

��i

�mad
�given by Eq.

�17�	 into Eq. �4� and we get

kdy =
�0

4�0�
4

EI

L3 . �18�

Here, �0
4�0� can be evaluated numerically using Eq. �14� re-

sulting in the analytical form of kdy,

kdy =
1

3.8828

a3bE

L3 . �19�

Now, we can quantitatively compare kst �given by Eq. �2�	
and kdy �given by Eq. �19�	. First, we can establish that the
two spring constants are not equal; the value of kdy is indeed
about 3% larger than kst, as suggested by Sidles et al.34

Hence, this theoretical analysis shows that cantilever spring
constant values acquired from dynamic calibration must be
corrected if the cantilever is used for static force measure-
ment. Second, it is also remarkable that the analysis pre-
sented above describes the dynamic spring constant of not
only the fundamental frequency but also arbitrary overtones
of the cantilever. The dynamic spring constant of the ith
overtone of the cantilever can be given as

kdy
i =

�i
4�0�
4

EI

L3 . �20�

In practice it is more useful to define the spring constants of
the overtones as a function of measurable quantities like
resonance frequencies. Combining Eqs. �15� and �20�, we get
the following simple formula:

kdy
i = kdy

0 �i
2

�0
2 . �21�

That is, for a rectangular cantilever, the ratio of spring con-
stants of any overtones and the fundamental mode equals the

square of the ratio of the corresponding eigenfrequencies.
Relative spring constants and resonance frequencies of the
first three overtones are listed in Table I.

One can notice that the spring constant rapidly increases
with the mode number as also suggested by Sidles et al.34

This result is especially important when considering AFM
operation at higher eigenmodes. Presuming the validity of
Eq. �1�, imaging force will increase substantially, thus the
advantage gained with the wider bandwidth of the
overtones23,38 might be lost this way. It remains unclear,
however, which effect will dominate. Further modeling work
is underway to evaluate this issue.

An important consequence of Eq. �21� is that the kdy
i /�i

2

ratio is constant for all i. This means that if the overtones of
the cantilever are modeled as simple spring-mass systems,
the effective mass values are the same for all overtones.
Thus, in this respect, different overtones behave like linear
springs of the same masses and different spring constants.
Notably, previous works based on modal analysis suggested
the change of effective mass,39,40 however, with different
boundary conditions. These works included a “concentrated”
tip-surface interaction term that induce a multimodal cantile-
ver response.

Equation �4� can be also used to describe the dependence
of the dynamic spring constants on the added mass. We cal-
culated the dynamic spring constant as a function of added
mass for the fundamental mode and the first two overtones

FIG. 2. Dynamic spring constants of the fundamental �solid
line�, first �dashed line�, and second overtones �dotted line� vs
added mass ratio. Cantilever data match with the commercial Mik-
roMasch NSC36 C cantilever �a=1 �m, b=35 �m, L=130 �m,
nominal spring constant 0.6 N/m, and nominal resonance frequency
75 kHz�. It can be seen that while the fundamental mode remains
remarkably constant when the added mass changes 10−6–1 times
from the cantilever mass, the harmonic modes become significantly
harder with the increasing added mass.

TABLE I. Relative eigenfrequencies and spring constants of the
first three overtones of a rectangular microcantilever.

Mode number Relative frequency Relative spring constant

0 1.0000 1.0000

1 6.2669 39.2739

2 17.5475 307.9141

3 34.3861 1182.4012
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by solving Eq. �4� numerically. Geometry of a commercial
soft tapping mode cantilever �MikroMasch NSC36 C� was
used. Results are depicted in Fig. 2. Interestingly, the funda-
mental mode shows a different behavior compared to the
overtones; while it remains nearly constant within the range
of 10−6 to 1 �added mass over cantilever mass�, the spring
constants of overtones significantly increase toward larger
added masses. This increase suggests that the linear spring
model is suitable for the fundamental mode, while only ap-
plicable to small masses for the higher eigenmodes.

In summary, we deduced a formula that relates the dy-
namic �resonant� and the Hookian �bending� spring constants
of an Euler-Bernoulli microcantilever beam. We found that
the dynamic spring constant is 3% higher than the Hookian
spring constant. We presented a general formula to determine
effective spring constants of arbitrary overtones of the canti-
lever beam and thus accurately calculate interaction forces

when using overtones for AFM imaging or force sensing. We
described the effect of added mass on the spring constant,
which is unchanging for the fundamental mode, but is non-
linear for the higher eigenmodes. As higher overtones of the
cantilever beam are considered for fast AFM operation, our
results provide the means of calculating working character-
istics of such systems.
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